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This paper describes an experiment in which a uniformly sheared turbulence was sub-
jected to simultaneous streamwise flow curvature and rotation about the streamwise
axis. The distortion of the turbulence is complex but well defined and may serve as
a test case for turbulence model development. The uniformly sheared turbulence was
developed in a straight wind tunnel and then passed into a curved tunnel section. At
the start of the curved section the plane of the mean shear was normal to the plane of
curvature so as to create a three-dimensional or ‘out of plane’ curvature configuration.
On entering the curved tunnel, the flow developed a streamwise mean vorticity that
rotated the mean shear about the tunnel centreline through approximately 70◦, so that
the shear was nearly in the plane of curvature and oriented so as to have a stabilizing
effect on the turbulence. Hot wire measurements of the mean velocity, mean vorticity,
mean rate of strain and Reynolds stress anisotropy development along the wind
tunnel centreline are reported. The observed effect of the mean shear rotation on
the turbulence was to diminish the shear stress in the plane normal to the plane of
curvature while generating non-zero values of the shear stress in the plane of curvature.
A rotating frame was identified for which the measured mean velocity field took the
form of a simple shear flow. The turbulence anisotropy was transformed to this frame
to estimate the effects of frame rotation on the structure of sheared turbulence.

1. Introduction
This paper is the fourth in a series that describes the effects of plane curvature

on uniformly sheared turbulence. In all of these experiments the turbulence was
developed in a straight wind tunnel section until it was nearly homogeneous and
had a self-preserving sheared structure as described by Tavoularis & Karnik (1989).
The flow was then passed into a curved wind tunnel section that turned the flow
without significantly affecting the uniformity of the shear or the homogeneity of the
turbulence but did produce a rotation of the mean shear and substantial adjustments
in the anisotropy of the turbulence stress tensor. The previous papers considered
plane flow cases: prolonged constant flow curvature (Holloway & Tavoularis 1992),
reversing flow curvature (Chebbi, Holloway & Tavoularis 1998) and the combined
effects of favourable pressure gradient and flow curvature (Holloway, Roach &
Akbary 2005). The present study considered the three-dimensional (or ‘out of plane’)
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Figure 1. Flow configuration and coordinates: (a) plane of the curvature showing the s, n
and z curvilinear coordinates and the inertial Cartesian coordinates Xi , (b) the mean shear
(with negative sign) and the rotating coordinates X∗

i and (c) rotation of the coordinate system
X∗

i , around the streamwise direction by angle β . Note that the mean shear at the start of
curvature is in the plane normal to the plane of curvature but by the end of the measurement
region in the curved tunnel it has rotated into the plane of curvature.
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Figure 2. (a) Components of the mean vorticity ζ in the (s, n, z) coordinate system.
(b) Projection of the mean vorticity ζ0 on the cross-flow plane.

case where the mean shear lies in a plane normal to the plane of curvature at the
entrance to the curved tunnel as shown in figure 1. A unique feature of this flow
was the development of a streamwise component of mean vorticity that rotated the
mean shear about the streamwise axis towards the plane of the curvature with the
higher mean velocity on the outside of the curve. As a consequence the turbulence
was subjected to the combined effects of stabilizing streamwise curvature and rotation
about the streamwise axis.

The streamwise mean vorticity ζs originates with the vorticity of the mean shear
ζn present at the start of curvature (see figure 2). As the flow curves this mean
vorticity maintains its orientation relative to an inertial frame while being stretched
so that it develops a projection on the streamwise direction. The result dζs = 2 ζndθ

is generally referred to as Squires Formula (Scorer 1978). Considering the full theory,
the streamwise vorticity undergoes a streamwise oscillation with a wavelength of
2π

√
UR/ζ0, where ζo is the initial vorticity magnitude. In the present curved flow

experiment approximately one-fourth of this period of oscillation was observed.
The turbulence at the start of curvature was typical of sheared flow with one

dominant shear stress that transported momentum down the gradient of mean
velocity. As the mean shear rotated, two additional shear components of the turbulence
stress were generated. The initially dominant shear stress was diminished to nearly
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zero. The present paper presents the measured development of both the mean flow
and the turbulence anisotropy along the centreline of the curved tunnel section as
described above. In addition, an analytical model of the mean vorticity development
is presented to assist interpretation of this complex mean flow.

The problem of rotating homogeneous shear flow has received considerable
theoretical study because it is conceptually simple and yet retains the essential
elements of energy redistribution among both physical directions and scales. Examples
of analytical and computational studies are Leuchter, Benoit & Cambon (1992), Salhi
and Cambon (1997), Brethouwer (2005), Akylas, Kassinos & Langer (2006) and
Jacobitz et al. (2008). In each of these cases the axis of mean rotation was normal
to the plane of distortion (mean shearing) and the initial state of the turbulence was
isotropic with the strength of rotation measured as R = (twice the frame rotation
rate/mean shear rate). In this configuration there is only one non-zero turbulent shear
stress due to the statistical symmetry about the plane of shearing. Jacobitz et al. (2008)
considered very strong rotation with R = ±0.5, ±5, Akylas et al. (2006) considered
the case of zero rotation with respect to an inertial frame R = −1, Brethouwer
(2005) and Salhi & Cambon (1997) reported studies of R = −3/2, −1, −1/2, 0, 1/2
and Leuchter et al. (1992) considered the case of R = 2. In summary, the analysis
showed stabilizing effects of rotation for R > 0 and destabilizing effects of rotation
for −1 < R < 0 with the maximum instability at R = −1/2. A significant result of
these analyses was an understanding of the effects of frame rotation on the pressure
strain rate covariance. Computational studies of rotation effects were completed for
5–15 units of shear strain, depending on the rate of rotation, and these provided some
qualitative confirmation to the analytical results. Leuchter et al. (1992) also presented
experimental data for the case with R = 2 for a full 360◦ of rotation of the plane strain
rate direction. This experiment used a rotating grid to generate turbulence that was
then passed into a wind tunnel test section whose cross-section imposed plane strain
normal to the streamwise direction and hence normal to the axis of rotation. The
turbulent kinetic energy at first decayed rapidly and then remained nearly constant
while the components of the Reynolds stress anisotropy were observed to oscillate as
predicted by theoretical analysis.

There does not appear to be any computational or experimental studies of
homogeneous shear flow subjected to rotation about the streamwise or transverse
axes. However a comprehensive analytical and numerical study of fully developed
channel flow with streamwise rotation was reported by Oberlack et al. (2006) for
rotation numbers, Rn = Ωsh/uτ =2.5, 6.5 and 10, where h is the channel width and
uτ is the friction velocity. For the Rn= 10 case strong secondary mean flows were
observed and all three shear components of the Reynolds stress took on non-zero
values with those in the spanwise and transverse planes being the most significant.

An analogy can be made between these rotating homogeneous shear flows and
homogeneous curved shear flow. This can be done by equating the frame rotation
rate to the rate of rotation of the streamwise direction in the curved flow Ω = U /R.
The mean shear rate of the curved flow in this rotating frame is ∂U/∂n−U/R, where n
is the coordinate normal to the streamline, so that by analogy we have R = 2S/(1−S)
where S =(U/R)/(∂U/∂n). Holloway & Tavoularis (1992) studied uniformly sheared
turbulence subjected to prolonged constant curvature experimentally for a range of
curvature effects: −0.5 <S < 0.5 which corresponds to −2.4 < R < 2.0. These flows
were realized using tunnels of two different curvatures in conjunction with five different
shear rates (each having a positive and negative sense) to produce 20 flows. For the
more strongly curved flows the mean shear was turned up to 40◦ within the range
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of measurement. The more highly sheared cases were subjected to approximately 10
units of shear strain after the imposition of curvature. A significant difference between
this experimental study and the rotating shear flow studies cited above was that the
turbulence in this flow had growing integral length scales and turbulence stresses that
were strongly anisotropic prior to the application of curvature. This was achieved by
applying at least 10 units of shear strain in a straight wind tunnel section. Correlations
for the exponent of turbulence energy growth, the shear stress anisotropy and the pres-
sure strain rate covariance in terms of the curvature parameter S were presented for
the range −0.2 <S < 0.2. One of the conclusions of their study was that the turbulence
energy decayed for R > 0.1 and grew for R < 0.1. Holloway & Gupta (1993) conducted
a computational study of this curved shear flow that was based on Rapid Distortion
Theory. Using this method they found that they could predict observed effects of
strong curvature such as the reversal of the turbulence shear stress and the scale
dependence of curvature effects on the coherence spectrum of the velocity fluctuations.

Considering the present flow as a rotating shear flow the frame rotation would have
three components: a component normal to the plane of curvature, Ωz = −U/R (as
above), a streamwise component Ωs and a component normal to the plane of the shear.
Consequently this flow lacks the symmetries of a flow with the axis of rotation normal
to the plane of shearing, and the Reynolds stress tensor potentially has six non-zero
components. Nevertheless, the analogy with rotating shear flow will be developed in
a detailed way in the next section and used in the discussion of the results.

2. Analytical description of the flow
2.1. Mean flow

Figure 1 defines the curvilinear and Cartesian coordinate axes used to describe the
present curved shear flow. The s coordinate follows a mean streamline which has a
local radius of curvature R. The mean velocity U is tangent to s and the cross-stream
mean velocity gradient, subsequently referred to as the mean shear, is uniform. The
mean cross-stream velocity components V and W are zero along s but the cross-
stream gradients of V and W are not zero. It is assumed that, ∂V /∂z + ∂W/∂n =0,
which makes the shear strain in the (n, z) plane zero and puts the mean shear entirely
in the (s, n) and (s, z) planes. Components of the fluctuating velocity in the (s, n, z) co-
ordinates are designated as u, v and w, respectively. The mean velocity gradient tensor
on the mean streamline s for this flow can be expressed in curvilinear coordinates as

∇V =
1

2
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The first term represents the mean strain rate and the second the mean vorticity
for the simplified flow described above. The mean vorticity components illustrated in
figure 2 are defined as

ζs = 2
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(2.2)
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The resultant vorticity in the (n, z) plane ζ0 =
√

ζ 2
n + ζ 2

z is at the angle α =

tan−1(ζz/ζn) to the n-axis. At the start of curvature the mean shear is in the (s, z)
plane and the mean vorticity is directed in the negative n direction. As the flow
develops along s the mean vorticity projection ζ0 swings to the negative z direction
so that the plane of mean shear approaches the plane of mean flow curvature with
the mean velocity increasing outward from the centre of curvature.

It is possible to define a coordinate system in which (2.1) reduces to a simple shear
flow with the streamwise direction X∗

1 tangent to s and the transverse direction X∗
3

in the plane of the mean shear at all positions along s. The required rotation around
the X∗

1axis is

β = tan−1

(
tan α + 2

U

R
ζ −1
n

)
. (2.5)

The magnitude of the resulting mean shear rate is
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R

)2

+

(
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)2

. (2.6)

Transformation of the velocity components from curvilinear coordinates (U, V, W )T

to U ∗
i can be accomplished by the rotational transformation (Hinze 1975)⎡

⎢⎣
U ∗

1

U ∗
2

U ∗
3

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 cosβ − sinβ

0 sinβ cos β

⎤
⎥⎦

⎡
⎢⎣

U

V

W

⎤
⎥⎦ (2.7)

where the rotation matrix will be referred to as e∗
ij .

The velocity components in the inertial Cartesian coordinates Ui can be transformed
to the velocity in the shear frame axes U ∗

i by a rotation about the X3 (or equivalently
z coordinate) by the angle −θ =

∫ s

0
(1/R)ds ′, followed by a rotation β about the X∗

1

axis to give U ∗
i = Ukekle

∗
li . The rotation matrix eij is

eij =

⎡
⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦ . (2.8)

The resulting rotation rate of the coordinates X∗
i relative to inertial coordinates Xi

and expressed in rotating X∗
i coordinates is (Meirovitch 1970)

Ω∗
i = (β̇ − θ̇ cosβ, θ̇ sinβ, θ̇ cos β). (2.9)

2.2. Streamwise deceleration

The measurements of the mean flow demonstrated a small amount of streamwise
strain, ∂U/∂s, and in this section we explore the effects it had on the mean strain
rate. The equation of mean flow continuity expressed in X∗

i coordinates gives the
cross-plane dilation as

Θ =
∂U ∗

2

∂X∗
2

+
∂U ∗

3

∂X∗
3

. (2.10)

In the present flow, Θ/Σ is small over most of the curved tunnel section but rises
near the end to values of 0.15 where it will be shown to have a significant effect on
the turbulence. The mean strain rate tensor can be written in the following form in
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the rotating X∗
i coordinates:

S∗ =
1

2

⎛
⎜⎝

−2Θ 0 Σ

0 2λΘ 0

Σ 0 2 (1 − λ) Θ

⎞
⎟⎠ , (2.11)

where λ= 0, 1/2 or 1 depending on whether the dilation is transverse, axisymmetric
or spanwise, respectively. In the presence of mean flow dilation the flow cannot be
considered a pure shear flow relative to X∗

i coordinates.

2.3. Development of the mean vorticity field

In this section we present an analytical model of the mean vorticity development. It
is not meant to be quantitatively accurate but rather to provide some insight into the
development of this complex mean flow which is otherwise difficult to understand. To
simplify the analysis we will assume axisymmetric dilation (λ= 1/2). The equations
for vorticity development along a streamline in an inviscid flow are (Roach 2001)
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where k =U0/U and U0 is the mean speed at the start of curvature. We will associate
ζ with the mean vorticity in spite of the fact that the flow is turbulent. This
approximation is not as severe as it might first seem because near the tunnel centreline
the turbulence is approximately homogeneous and therefore provides minimal net
transport of mean vorticity. Equations (2.12)–(2.14) have an exact solution in the
form

ζs =
U0

k

dα

ds
(2.15)

ζn =
√

kζ0 cos α (2.16)

ζz =
√

kζ0 sinα (2.17)

where ζ0 is the mean vorticity magnitude at the start of curvature. The angle α of the
projection, ζ0 =

√
ζ 2

n
+ ζ 2

z , to the n axis (see figure 2) is determined by the equation

d2α

ds2
+

k3/2ζ0

U0R
sinα = 0 (2.18)

which has as its solution oscillations analogous to pendular motion with the direction
of ζ 0 and the magnitude of the streamwise component of vorticity oscillating along
the streamline. In the case of zero dilation, k = 1, we can see that the magnitude of
ζ0 remains constant and is equal to the mean shear at the start of curvature.

In the presence of flow dilation k = 1 +
∫ s

0
(Θ/U0)ds ′ > 1 and there is an increase

in ζ0 at the expense of ζs . The present flow parameters are such that only a quarter
period of the predicted oscillation is observed and, with 0.9 <k < 1.0, the effect of
dilation on the mean vorticity is mild over most of the tunnel length.
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Figure 3. Schematic illustration of the wind tunnel showing straight and curved
tunnel test sections.

2.4. Turbulence

The components of the Reynolds stress tensor in curvilinear coordinates are
u2, v2, w2, uv, uw and vw. The invariant of the Reynolds stress tensor q2 = u2+v2+w2

is twice the turbulent kinetic energy per unit mass. The turbulence parameter of
primary interest in this paper is the Reynolds stress anisotropy with components
defined as

muu =
u2

q2
− 1

3
mvv =

v2

q2
− 1

3
mww =

w2

q2
− 1

3

muv =
uv

q2
muw =

uw

q2
mvw =

vw

q2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)

In the following presentation and discussion of the results there will be a need to
transform the stress anisotropy between the curvilinear coordinates, denoted by muu ,
mvv , etc. (referred to as mij ) and the rotating X∗

i coordinates. This can be done using
the standard rotational transformation for a second-order tensor (Hinze 1975)

m∗
ij = mkle

∗
kie

∗
lj (2.20)

where m∗
ij is the stress anisotropy tensor in the X∗

i frame.

3. Experimental apparatus and instrumentation
The wind tunnel at the University of New Brunswick is of the open-return type

shown in figure 3. The flow is conditioned with a large settling chamber and a 16:1
contraction that produces a flow with a non-uniformity of approximately 1 % and
a turbulence intensity of less than 0.1 %. The uniform shear was produced using a
shear generator (Tavoularis & Karnik 1989) placed immediately downwind of the
nozzle. The wind tunnel and measurement system used in this study are the same as
used by Holloway et al. (2005) and for further details the reader may consult that
paper. The key difference between the previous studies and the present one is that
the shear generator was rotated about the streamwise axis by 90◦ so as to produce a
mean shear that lies in a plane normal to the plane of curvature.

The straight tunnel section allows the turbulence to homogenize following the shear
generator and to develop a self-preserving structure under the influence of uniform
shearing that provides a well-defined initial state of the turbulence for the subsequent
application of flow curvature and rotation. Once the flow reaches the end of the
straight section, it is passed tangentially into the curved portion of the wind tunnel
which had a centreline radius of 3 m and a streamwise length of 3.14 m. The square
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Station 1 2 3 4 5 6 7 8 9

s (m) 0.028 0.342 0.656 0.970 1.284 1.598 1.912 2.227 2.541

Table 1. Positions of cross-stream measurement planes.

cross-section of the curved tunnel had a dimension of 50 cm, slightly smaller than the
straight test section, to facilitate removal of the boundary layers at the entrance of
the curved section. In addition the corners of the curved tunnel section were filleted
and a slight pressurization of the curved tunnel section was provided to facilitate
bleeding of low-speed fluid from the corners. This latter measure caused a gradual
deceleration of the flow but prevented flow separation.

Measurements were taken over the wind tunnel cross-section at the nine streamwise
locations listed in table 1 so that the cross-stream gradients of the streamwise mean
velocity could be adequately assessed. Measurements along the wind tunnel centreline
were made at 4 cm intervals in both the straight and curved sections of the tunnel
to allow the measurement of the mean velocity and turbulence development. No
measurements were made in the last 0.5 m of the curved test section to avoid errors
associated with the flow exit. At each position the probe axis was tangent to the
tunnel centreline so that strictly speaking the measurements in the curved tunnel
corresponded to a coordinate system with a fixed radius of R′ = 3 m. Here we will
present measured quantities, corresponding to the fixed radius of centreline curvature,
as being in (s, n, z) coordinates (U, V, muu , mvv , etc.). The angle between the probe
axis and the local mean velocity direction was estimated from the measurements as
∼V/U or ∼W/U and was found to be less than 10◦ in all cases. This misalignment
therefore does not have a significant effect on the accuracy of the hot-wire
measurements.

The fluid velocity was measured using standard constant temperature hot-wire
anemometry techniques (Tavoularis 2005) and a Dantec P61 X-wire probe. The
sensing elements were made from 5 μm diameter tungsten wire, 1.25 mm long and
separated by 0.9 mm. Directional calibration of the hot wires for pitch consisted of
fitting an effective wire angle to a cosine cooling law. Near the tunnel centreline the
angle of the flow to the plane of the wires was at most a few degrees on average
and consequently the cooling due to out- of-plane velocities was neglected. Speed
calibration of the hot-wires was performed in the wind-tunnel under low-turbulence-
flow conditions (shear generator removed) with the probe placed at the first streamwise
measurement position. A modified form of King’s Law (Roach 2001) was used to
correlate the bridge voltages to the flow speed.

The present flow, because of its complex strain history, lacks the symmetry typical
of plane shear flows. As a consequence the Reynolds stress tensor had six independent
non-zero components u2, v2, w2, uv, uw and vw. These were measured by a series
of rotations of the cross-wire probe about its longitudinal axis. In all, four rotary
positions were required: (i) alignment of the cross-wires with the (s, n) plane gave
u2, v2 and uv, (ii) alignment of the cross-wires with the (s, z) plane gave u2, w2 and
uw, (iii) alignment of the cross-wires with planes oriented at +45◦ to the (s, n) plane
gives u2, v′2 and uv′ where the prime indicates a velocity parallel to the plane of the
cross-wires and (iv) rotation of the probe at −45◦ to the (s, n) plane gives u2, w′′2 and
uw′′. The shear stress vw was calculated from the difference vw = 1/2((v′)2 − (w′′)2).
For the details of the procedure see Roach (2001).



Combined effects of flow curvature and rotation on uniformly sheared turbulence 379

Variable Value Uncertainty

U (m s−1) 10 2%
V (m s−1) 0.5 0.1
W (m s−1) 0.5 0.1
ζs (s−1) 15 10%
ζn (s−1) 20 10%
ζz (s−1) 20 10%
Θ (s−1) 3.0 5%
Σ (s−1) 21 10%
q2 (m2 s−2) 0.60 3%
Luu (m) 0.10 15%
muu+1/3 0.53 4%
mvv+1/3 0.28 8%
mww+1/3 0.18 8%
muv 0.05 0.01
muw 0.13 0.01
mvw 0.05 0.03

Table 2. Systematic and statistical uncertainties of measurement.

The streamwise integral length scale Luu was approximated using temporal integral
scales and Taylor’s frozen flow approximation. It is not possible to define an integral
length scale that is invariant to rotation, as is q2, when only measurements for
streamwise separations are available. However, it should be noted that the streamwise
velocity fluctuations and the streamwise separation distance, and hence Luu , are
invariant to rotations about the streamwise axis that the mean shear undergoes in
the present flow.

Uncertainty in measured quantities was similar to those reported in Chebbi et al.
(1998) and the results are listed in table 2.

4. Measurements
4.1. Mean Flow

The mean shear had components in both the n and z directions that may be inferred
from figures 4 and 5. These profiles are representative of the 177 point measurement
array used at each of the nine streamwise stations along the curved tunnel to determine
the mean shear and the mean vorticity of the flow. At the start of curvature the mean
shear is almost entirely in the (s, z) plane and is very uniform as shown in figure 4(a).
The mean velocity profile in the (s, n) plane (figure 5a), shows no appreciable shear in
the vicinity of the tunnel centreline although it has been turned up slightly towards the
tunnel walls at the start of curvature to compensate for subsequent flow development.
As the flow develops the mean shear is seen to rotate about the streamwise direction
so that in the (s, z) plane the shear gradually weakens while in the (s, n) plane it
strengthens. Most of this rotation of the mean shear occurs between stations 7 and
9 at which point it has almost completely rotated into the (s, n) plane with the
velocity increasing outward from the centre of curvature; corresponding to the case
of stabilizing plane curvature. The flow has also decelerated significantly but the
uniformity of the mean shear in the n direction at station 9 (after the streamwise
rotation) is surprisingly good. The mean velocity profile in the z direction at station 9,
however, contains significant non-uniformities outside of z = ±5 cm. It is likely that
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Figure 4. Spanwise profiles of the mean streamwise velocity U and the inhomogeneity
of the primary shear components of anisotropy muv , muw and m∗

13, measured at the nine
streamwise stations listed in table 1. Symbols denote data from stations: 1 �, 2 �,
3 �, 4 �, 5 �, 6 �, 7�, 8 	, 9+.
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Figure 5. Transverse profiles of the mean streamwise velocity U and the inhomogeneity of
the primary shear components of anisotropy muv and muw measured at the nine streamwise
stations listed in table 1. Symbols denote data from stations: 1 �, 2 �, 3 �, 4 �, 5 �, 6 �, 7�,
8 	, 9 +.

these non-uniformities are a consequence of the rotation and deceleration of the
uniform shear and cannot be reduced.

The inhomogeneous portion of the primary shear components of the turbulence
anisotropy, defined as muv − muvc and muw − muwc where muwc is the centreline value,
are shown in figures 4 and 5. Overall the inhomogeneities of the turbulence in this
flow are comparable to previous studies and can be traced to non-uniformities in
the slope of the mean velocity profiles and the parameter U /R across the flow.
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However, the present flow has unique requirements for the homogeneity that relate
to its three-dimensional character. Primarily, it is the fact that what is initially the
out-of-plane shear component of anisotropy muv at station 1 is important for the
development of the flow. In plane shear flows, the out-of-plane component of shear
anisotropy is nearly zero, due to flow symmetry, and in practice is uncoupled from
the mean shear, and mild inhomogeneities are not a serious concern. A similar
situation occurs at station 9 for muw where the mean shear has rotated from the
(s, z) plane to the (s, n) plane and it becomes the out-of-plane shear component.
Here, in the absence of a strong mean shear, muw develops inhomogeneities due to
the non-uniformities in the mean velocity profile shown in figure 4(a). Conversely, at
station 9 we have the inhomogeneity of muv decreasing since the mean shear is now
in the (s, n) plane. A better evaluation of the inhomogeneity of the turbulence can
be made by considering the shear component of the anisotropy in the plane of the
rotating mean shear m∗

13 − m∗
13c shown in figure 4(d ). Here we see that the turbulence

has a homogeneity comparable to previous uniformly sheared turbulence studies in
the range of z = ±5 cm and n= ±5 cm.

The development of the mean velocity U, the total rate of shearing Σ and the
dilation Θ are shown in figure 6. There is an increase in centreline mean velocity at
the entrance of the curved tunnel followed by a gradual decrease along the length
of the curved section. The magnitude of the mean shear rate follows a similar trend.
This is to be expected since an invariant of uniformly sheared turbulence is the shear
generator constant ks =Σ/U (Tavoularis & Karnik 1989). In the present experiment
ks = 2.3 ± 0.1m−1 both in the straight and curved tunnel sections. The streamwise
gradient of the streamwise component of mean velocity was used to calculate the
dilation. It is relatively small until the final third of tunnel where it approaches 15 %
of the mean shear. It was not possible to estimate the cross-stream mean velocity
gradient ∂V /∂n because its small size was below the measurement uncertainty. This
made it impossible to determine by direct measurement whether the dilation in the
cross-flow plane is more planar than axisymmetric.

Although the mean streamlines ran very close to the tunnel centreline the local
mean streamline curvature, κ = R−1 	= (1/3) m−1 near the entrance of the curved test
section because of the need for a smooth transition from the straight tunnel to the
curved tunnel. The actual development of the streamline curvature in this region was
estimated from the measurements using the following approximation to the tangential
angle – θ defined in figure 1

−θ =
s

R′ − δ (4.1)

in which the centreline radius R′ = 3 m and δ = tan−1(V/U ) > 0. An inherent
assumption in the use of (4.1) is that the turbulence and mean distortions are
nearly homogeneous near the tunnel centreline. The rate of turning of the streamwise
direction is −θ̇ = Uκ and this has also been plotted in figure 6. In the latter half
of the curved tunnel the deviation of the local mean flow direction from the tunnel
centreline arises from differences in boundary layer development on the tunnel walls
that can produce slight displacements of the mean shear and the centre of mean
flow rotation in the cross-flow plane. The components of mean vorticity and stress
anisotropy in coordinates tangent to the local flow direction were estimated from the
measured components by rotation of the measured quantities about the z axis using
the rotation tensor eij , defined by (2.8), and the angle δ. The adjusted values, shown
in figures 7 and 10 as crosses, should be regarded as very approximate.
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Figure 6. Development of the normalized streamwise mean velocity � U/U0; the total mean
shear rate � Σ/Σ0; the rate of rotation o θ̇/Σ0 and the mean flow dilation � Θ/Σ0; measured
along the wind tunnel centreline. U0 = 9.8 m s−1 and Σ0 = 21 s−1.
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Figure 7. Streamwise development of mean vorticity components along the tunnel centreline.
Symbols represent measurements of � ζs/Σo, � ζn/Σo, � ζz/Σo, �

√
kζ0. Crosses represent an

estimate of the vorticity components in coordinates rotated to the local mean flow direction.
The solid lines represent the solution of (2.15)–(2.18).

The measured development of the mean vorticity components, ζs, ζn and ζz, is
shown in figure 7. Predictions made using (2.15)–(2.18) and the mean flow data of
figure 6 are indicated by solid lines. The theory dictates that the streamwise vorticity
ζs is generated by the turning of the coordinates and stretching of the initial vorticity
of the mean shear ζn. This development is periodic with the value of ζs increasing
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β = 11.946s6 – 87.454s5 + 251.15s4 – 359.25s3 + 275.04s2 – 92.574s + 1.7932 

ψ = –4.5642s6 + 36.557s5 – 112.37s4 + 168.66s3 – 127.83s2 + 44.312s – 3.3878 

θ = –0.5025s6 + 4.1431s5 – 13.287s4 + 20.895s3 – 17.768s2 – 7.2831s + 0.1857 

Figure 8. Development of the angles of coordinate rotation measured in degrees. Symbols
are: � θ, � β and � ψ . The solid lines are sixth-order polynomial curve fits as indicated in
the legend.

and then decreasing as the cross-stream components of the mean vorticity ζn and
ζz exchange values in such a way that

√
kζ0 remains constant. The measurements

in figure 7 show approximately 1/4 wavelength of the predicted oscillation with
the maximum value of the ratio ζs/Σ ∼ 0.75. Considering the errors inherent in the
measurement of the mean vorticity components, and the underlying assumption of
inviscid flow used in the theory, the agreement between the observed and theoretical
values is sufficiently good to accept the theoretical explanation of the observed flow
development. As can be seen, even the mean flow has a complex evolution in the
present experiment.

The measured development of the angles of mean flow rotation, θ and β is shown
in figure 8. The flow curvature turns the streamwise direction, and hence the mean
shear, through the angle θ ∼ −40◦ about the z -axis. The streamwise mean vorticity
turns the mean shear through the angle β ∼ 70◦ about the streamwise axis X∗

1. The
negative values of β during the initial development result from the contribution of
curvature (see (2.5)) which begins before the swirling motion. The third angle, shown
in figure 8, ψ represents the angle of rotation of the plane of maximum mean shear
about the X∗

2 axis due to flow dilation. The angle ψ is relatively small but it has been
found to be significant as will be described in § 5.

4.2. Turbulence

The development of the turbulence scales, q =
√

q2 and Luu , along the wind tunnel
centreline, is shown in figure 9. The turbulence experiences 10 units of shear strain,
τ = sk, in the straight wind tunnel prior to the start of curvature and 5 units of
shear strain in the curved test section. The velocity and length scales are clearly
growing at the end of the straight tunnel and a small portion of this development is
included as a reference. After the start of flow curvature the rate of growth of the
velocity scale, q , is diminished until q reaches a maximum and begins to decline. The
length scale Luu grows at precisely the same rate as q up to s = 1.50 m, where the
streamwise rotation and flow dilation become significant. An explanation offered for
the subsequent decline in Luu is that the negative streamwise strain rate compresses all
flow structures, and hence the length scales, in the streamwise direction. As a test of
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Figure 9. Streamwise development of the normalized turbulence scales � q/qo, � Luu/Luuo

and � q/LuuΣ . The initial values at the start of the curved test section are qo = 0.67 m s−1 and
Luuo = 6.8 cm. The solid line represents the reduction in length scales expected due to mean
streamwise strain alone.

this hypothesis the reduction in length scales due to streamwise strain rate alone was
calculated as, Luu =Luu1 exp(−

∫ s

s1
(Θ/U )ds ′, with Θ taken from figure 6. The result

is shown as the solid line in figure 9. The maximum size reached by the length scale
Luu = 11 cm.

Also plotted in figure 9 is the dimensionless time scale ratio q/LuuΣ which compares
the eddy turnover rate to the shear rate. It can be seen that q/LuuΣ ∼ 0.5, which is
typical of uniformly sheared flows, as far as s = 2.25 m. Beyond this point the eddy
turnover rate appears to be affected by another time scale. It will be shown in § 5 that
this other time scale is most likely the streamwise strain rate which is responsible for
a significant fraction of the turbulence production in this region.

The dissipation of turbulence kinetic energy ε was not directly measured in this
experiment although it is possible to estimate it from the balance of convection and
production in uniform shear flow as ε = P − U (d/ds)(q2/2). In the straight tunnel
section prior to the start of curvature, where the shear rate is nearly constant and
there are no additional strains, the turbulence energy grows exponentially due to its
self-preserving structure and reasonable estimates of Udq2/ds and hence ε can be
obtained. In this region of the flow, it was found that ε/q2Σ ∼ 0.14 and ε/P ∼ 0.64,
both of which are within the range reported by Tavoularis & Karnik (1989). In
the curved tunnel section, estimates of ε/P vary from 0.2 near the entrance to 1.5
at s = 2.52. It should also be noted that the ‘dissipation’ of the Reynolds stresses in
uniformly sheared laboratory experiments is not isotropic but rather has an anisotropy
similar to that of the stresses themselves (Tavoularis & Karnik 1989).

The measured development of the Reynolds stress anisotropy components along
the tunnel centreline is shown in figure 10. The three normal components of the
stress anisotropy muu , mvv and mww remain nearly unaffected until the final third
of the tunnel where the streamwise component muu rises mostly at the expense of
mvv . This transfer of energy from the transverse to the streamwise direction begins
at s =1.60 m which, according to figure 10, is coincident with the rise in streamwise
rotation and the dilation. The dominant shear component of the anisotropy at the
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Figure 10. Streamwise development of the measured components of the turbulence stress
anisotropy along the wind tunnel centreline. Symbols are: � muu , � mvv , � mww , � muv ,
� muw , � mvw . Crosses represent an estimate of the anisotropy components in coordinates
rotated to the local mean flow direction.

start of curvature muw is initially positive, indicating momentum transport down the
gradient of mean velocity as one would expect, and declines gradually over most
of the tunnel to near zero values. This is consistent with the loss of mean shear
in the (s, z) plane shown in figure 6. The development of the shear component of
anisotropy mvw remains nearly zero until near the end of the measurement region
where it takes small positive values. If it is assumed that there is no mean shear
in the (n, z) plane one might suppose that it develops as a result of reorientation
of the turbulence. The shear component muv is initially zero but near the end of
the curved tunnel section it develops, presumably with some delay, negative values
as one would expect from gradient transport considerations with the mean shear
in the (s, n) plane being positive. It is noteworthy that the difference between the
measured components of the anisotropy expressed in coordinates tangent to the tunnel
centreline and the components transformed to coordinates tangent to the local mean
flow direction (indicated by +) is small with the single exception of muv . In this case,
the large difference arises from the strong anisotropy of the turbulence according to
the transformation m+

uv = −1/2 (muu − mvv ) sin δ + muv cos δ, but this estimate should
be considered more uncertain than the angle δ.

In order to exclude the effects of frame rotation on the turbulence anisotropy we
now consider the second invariant of the stress anisotropy tensor

II = m2
uu + m2

vv + m2
ww + 2m2

uv + 2m2
uw + 2m2

vw. (4.2)

This quantity is, by definition, invariant to rotation and has been plotted in figure 11
using the data of figure 10. The value of II shows a similar development to muuwith
near constancy up to the final third of the measurement range where the effects of
flow rotation and dilation become significant.
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Figure 11. The measured development of the second invariant of the Reynolds stress
anisotropy tensor II.

5. Discussion
The results presented in the previous section show that the mean shear is rotated

about the horizontal axis z by the angle θ and about the streamwise axis s by the
angle β . The maximum rates of these rotations relative to the mean shearing rate
are −θ̇/Σ ∼ 0.15 and β̇/Σ ≈ 0.75, and one would expect significant effects on the
turbulence anisotropy to result. In fact, figure 10 shows that muw is reduced to the
point where it changes sign and there is a significant redistribution of energy among
the normal components. The shear components muv and mvw are nearly zero at the
start of curvature but reach significant values by the end of the curved section.

In the discussion we explore the effects of the flow rotation on the turbulence as
a possible explanation of the observed development of the stress anisotropy shown
in figure 10. This will be done by transforming the measured turbulence anisotropy
to a frame of reference that rotates with the mean flow. This is done in two steps
starting with a transformation of the components of the stress anisotropy to the
rotating coordinates, X∗

i . These values are shown in figure 12 and were calculated
directly from the anisotropies of figure 10, using the angular data β of figure 8 and
the rotational transformation expressed by (2.20). The transformation used has no
effect on the streamwise normal component but it does affect the transverse and
spanwise normal components as well as the shear components. The changes in all
components of the anisotropy are seen to be more modest in this rotating frame than
in the laboratory frame but they are still significant. The anisotropy invariant II, as
indicated by figure 11, is unaffected. Comparing figures 10 and 12 one can conclude
that the turbulence is adjusting to the rotation of the mean shear relatively quickly
and that it retains its essentially plane shear character. A notable exception is the rise
of the shear component, m∗

12.
We now consider the effect of streamwise strain rate, and the resulting cross-plane

dilation, on the production of q2 in the rotating coordinates X∗
i

2P

Σ0q2
= −2m∗

13

Σ

Σ0

+ 2(m∗
11 − m∗

22)
Θ

Σ0

(5.1)
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Figure 12. Streamwise development of turbulence stress anisotropy transformed to rotating
coordinates X∗

i . Values transformed from the anisotropies shown in figure 10 using (2.20).
Symbols are: � m∗
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Figure 13. Development of normalized production 2P/q2Σ0 as defined by (5.1). Symbols are:
� total production, � the production due to shearing alone, � production due to streamwise
straining alone, � the total production according to (5.5).

where it is assumed that the dilation occurs entirely in the plane of the rotating
mean shear. The first term on the right-hand side is the normalized production due
to shearing and the second is the normalized production due to streamwise straining.
Both are proportional to components of the stress anisotropy. These production terms
have been plotted separately and as a sum in figure 13.

It is evident that the production due to shear declines steadily over the length of
the curved wind tunnel as the dominant shear component m∗

13 and the shear rate Σ
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Figure 14. Plane of maximum mean shear as determined by streamwise mean strain rate for
the case of plane strain. (a) Geometric representation of the strain rate transformation to the
plane of maximum shear and (b) geometric plane showing the Cartesian coordinate directions
aligned with the plane of the maximum shear rate.

decline (see figures 6 and 12). The shear component m∗
12 is not zero but neither does it

work against the mean shear and therefore produces no turbulence. The production
due to the streamwise strain rate, with Θ > 0, rises to become nearly equal to the
shear production by station 9. In fact, it is the streamwise strain rate that maintains
the total production, and hence the value of q2, which remains nearly constant in this
portion of the tunnel. The significance of the production due to streamwise strain rate
also offers a partial explanation of the rising value of m∗

11 and falling value of m∗
22.

We will now further explain the analogy of the present flow with rotating shear
flow by considering the streamwise strain rate from the perspective of its effect on
the orientation and magnitude of the maximum mean shear rate as discussed in
Holloway et al. (2005). For the case of plane dilation, λ= 0. The principal axis of
the mean strain rate with a streamwise stretching, −Θ = ∂U ∗

1 /∂x∗
1 > 0, and negative

shear, Σ = ∂U ∗
1 /∂x∗

3 < 0, is shown in figure 14(a).
The angle of rotation of the principal strain rate is

γ =
1

2
tan−1(−Σ/2Θ) (5.2)

and the rotation of the plane of maximum shear is ψ = γ + π/4. The development of
the angle ψ is shown in figure 8. The coordinate parallel to the plane of maximum
mean shear will be designated as X′

1 as shown in figure 14(b). The rotation from X∗
i

axes to X′
i requires a rotation about the X∗

2 axis using the rotation matrix

e′
ij =

⎡
⎢⎣

cos ψ 0 − sinψ

0 1 0

sinψ 0 cosψ

⎤
⎥⎦ . (5.3)

The maximum shear rate is increased for both acceleration and deceleration to

Σ
′
=

√
4Θ2 + Σ2. (5.4)
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Figure 15. Streamwise development of turbulence stress anisotropy in the frame of the
rotating mean shear. Values obtained from the anisotropies shown in Figure 12 by
transformation using (5.3). Symbols are: � m∗

11, � m′
22, � m′

33, � m′
12, � m′

13, � m′
23. Dashed

lines present the results of model (5.15).

The anisotropy expressed in the axes coincident with the plane of maximum shear
(assuming λ= 0) was calculated from the transformation m′

ij = m∗
kme′

kie
′
mj and is shown

in figure 15. Also shown in figure 15 are uncertainty bars at station 8 which amount to
±0.02 for all the normal anisotropy components and ±0.03 for the shear components.
These estimates include the inhomogeneity of the components expressed in (s, n, z)
coordinates within ±5 cm of the centreline. Admittedly these uncertainties are large
but they do bound the range of possible effects of the rotation in this flow.

The components of the stress anisotropy viewed in this rotating frame show less
variation than those in figures 10 and 12 but the invariant II calculated from all
three sets of data is identical as one would expect. Furthermore, the total production
of q2, also an invariant, can be computed as

P

Σoq2
= −2m′

13

Σ ′

Σ0

(5.5)

and this has been added to figure 13. It is nearly identical to that calculated using
(4.2).

The largest effects shown in figure 15 are evident in m′
11, m′

22, m′
12 and m′

13 while m′
33

is practically unchanged. One may conclude from figure 15 that m′
12 is made positive

and m′
13 is reduced in magnitude by the rotations applied. Oberlack et al. (2006) found

that streamwise rotation of fully developed channel flow generated significant values
of m′

12, having the same sign as m′
13, and more equal normal stresses. Unfortunately, a

direct comparison of streamwise rotation effects between these two flows is hampered
by the presence of spanwise and transverse rotations in the present case and the fully
developed, inhomogeneous nature of the channel flow.

The analysis of frame rotation effects on a pure shear flow are generally evaluated
on the basis of the rates of rotation about the shear frame axis measured relative
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Figure 16. Development of the three components of rotation of the frame of the mean shear
as calculated from (5.5)–(5.7). Each component is normalized by the magnitude of the shear
rate Σo = 21 s−1. Symbols are: � Ω ′

1/Σo, � Ω ′
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3/Σo.

to the rate of shearing. The components of this rotation in X′
i coordinates can be

expressed for the present flow as (Meirovitch 1970)

Ω ′
1 = − cos β sinψθ̇ + cos ψβ̇ (5.6)

Ω ′
2 = sinβθ̇ + ψ (5.7)

Ω ′
3 = cos β cosψθ̇ + sinψβ̇ (5.8)

The rotation rates, Ω ′
1, Ω

′
2 and Ω ′

3, were estimated by fitting sixth-order polynomials
to the measured values of θ, β and ψ shown in figure 8. The results, normalized by
Σo, are shown in figure 16. Of course, considerable caution needs to be exercised when
considering these rates of rotation because they include the derivatives of curve fits;
however, it seems reasonable to infer that Ω ′

1 and Ω ′
3 have opposite signs and both

are considerably larger in magnitude than Ω ′
2. Equation (5.7) shows that Ω ′

2 remains
small because θ̇ and ψ̇ have opposite signs. (Note that uniformly sheared turbulence
is very sensitive to spanwise rotation and that a sustained value of −Ω ′

2/Σ ′ = 0.05 is
sufficient to cause turbulence decay Holloway & Tavoularis 1992.) The total rotation
angles around the streamwise axis X′

1 and transverse axis X′
3 are approximately 1 and

0.5 rad, respectively, in the curved test section.
To assist in explaining the observed effects of rotation on the shear components of

the anisotropy demonstrated in figure 15, we first consider the transport equation for
the shear components of the Reynolds stresses in a rotating frame (Davidson 2004;
Oberlack et al. 2006)

d

dt
u′

1u
′
3 + 2Ω1

′u′
1u

′
2 − 2Ω ′

2

(
u′2

1 − u′2
3

)
− 2Ω ′

3u
′
2u

′
3 = −u′2

3 Σ ′ + π13 − ε13 (5.9)

d

dt
u′

1u
′
2 − 2Ω1

′u′
1u

′
3 + 2Ω ′

2u
′
2u

′
3 + 2Ω ′

3

(
u′2

1 − u′2
2

)
= π12 − ε12 (5.10)

d

dt
u′

2u
′
3 + 2Ω1

′(u′2
2 − u′2

3

)
− 2Ω ′

2u
′
1u

′
2 + 2Ω ′

3u
′
1u

′
3 = π23 − ε23 (5.11)
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d

dt
u′2

1 + 4Ω ′
2u

′
1u

′
3 − 4Ω ′

3u
′
1u

′
2 = −2u′

1u
′
3Σ

′ + π11
′ − ε11 (5.12)

d

dt
u′2

2 − 4Ω1
′u′

2u
′
3 + 4Ω ′

3u
′
1u

′
2 = π22 − ε22 (5.13)

d

dt
u′2

3 + 4Ω1
′u′

2u
′
3 − 4Ω ′

2u
′
1u

′
3 = π33 − ε33 (5.14)

The left-hand side of (5.9)–(5.14) represents the kinematic effect of frame rotation
on the rate of change of the stress components expressed in rotating coordinates. The
right-hand side represents the production due to shearing, the pressure strain rate
correlation and the ‘dissipative’ effect on the correlation, respectively. Given the data
of figure 15 we can test the hypothesis that the pressure–strain rate terms and the
dissipative terms of (5.9)–(5.14) do not depend on flow rotation.

In the present flow we have u′
2u

′
3 negligible, u′

1u
′
3 and u′

1u
′
2 positive and u′2

1 > u′2
2 >u′2

3 .

Considering the explicit rotation terms of (5.9) we see that the sensitivities of u′
1u

′
3

to the three components of rotation would be in the order Ω ′
2, Ω ′

1 and Ω ′
3: Positive

values of Ω ′
1 and negative values of Ω ′

2 tending to decrease u′
1u

′
3. Now consider the

sensitivity of the out-of-plane shear stresses, u′
1u

′
2 and u′

2u
′
3 to rotation. In both (5.10)

and (5.11) we see a strong sensitivity to the rotations to Ω ′
1 and Ω ′

3. For (5.10) these

terms are additive in the present flow (Ω ′
1 > 0 and Ω ′

3 < 0) and tend to make u′
1u

′
2

more positive. In (5.11) explicit rotation terms have opposite signs and nearly cancel
for the given state of turbulence stress. These observations are consistent with the
data in that u′

1u
′
3 > u′

1u
′
2 >u′

2u
′
3 ∼ 0. At the least we can conclude that the pressure

strain rate and dissipative terms of (5.9)–(5.11) do not completely negate the explicit
effects of the rotation. Now considering (5.12)–(5.14) for the normal stresses we find

that the most significant term is −4Ω ′
3u

′
1u

′
2, which transfers energy from u′2

1 to u′2
2 . The

next most significant terms would be 4Ω ′
2u

′
1u

′
3, which transfers energy from u′2

1 to u′2
3 .

The term −4Ω ′
1u

′
2u

′
3 is made negligible by the weak correlation between transverse

and spanwise fluctuations. These observations are inconsistent with the data so we
could conclude that the normal components of the pressure strain rate and dissipative
terms at the least negate the explicit effects of frame rotation in the present case.

We next explore the effect of rotation on the development of the stress anisotropy
in the present flow using an extension of the model introduced by Holloway &
Tavoularis (1998) to explain the effects of plane curvature on sheared turbulence. The
model assumes that the development of the stress anisotropy Mij expressed in inertial
frame coordinates Xi can be described by the equation

dMij

dt
= −

(
Mij − Mr

klRklij

)
Σ ′ (5.15)

where dt = Uds, Rklij = e′
mke

′
nle

∗
rme∗

sneirejs is the rotation tensor which includes the
rotations due to −ψ(t), −β(t) and −θ(t), in that order, and

Mr
kl =

⎡
⎢⎣
0.24 0 0.13

0 −0.08 0

0.13 0 −0.16

⎤
⎥⎦ (5.16)

is the anisotropy tensor of a rectilinear shear flow. The values chosen for (5.16)
are those just prior to the start of curvature in the present experiment. Equation
(5.15) asserts that in the absence of shearing the anisotropy components, assumed to
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be non-zero, remain constant in inertial coordinates. In the presence of shearing, the
anisotropy in the rotating frame tends towards the anisotropy of rectilinear shear flow,
Mr

kl , with a time scale equal to the inverse shear rate Σ
′−1. Once the integration of

(5.15) is complete for the interval of interest the stress anisotropy in the rotating frame
is obtained by applying the rotations in the order θ , β and ψ to give m′

ij = Mkl Rjilk .
Results of applying (5.15) to the present flow using the angle data provided in

figure 8 is represented by the dashed lines shown in figure 15. It is apparent that
the model results follow the shear components of the anisotropy fairly accurately.
In this context the development of positive values of m′

12 would be ascribed to a
delay in the turbulence adjustment to the rotation of the mean shear. On the other
hand the model mostly omits the effects of the rotation on the normal stresses,
and (not shown) the invariant II. Adjusting the time scale used in (5.12) gives only
marginal improvement. Consistent with (5.9)–(5.14) this analysis would conclude that
the observed changes in the shear components arise largely from rotation of the shear
while the effects on the normal stresses result from other dynamic processes. Davidson
(2004) discusses the effects of rotation in terms of the Rossby number, Ro = u′/lΩ ,
and makes the observation for Ro � 1; there are significant changes in the structure of
homogeneous turbulence. In the present flow, we have Ro = qo/Ω Luuo ∼ 1 at position

8 using Ω =
√

Ω ′2
1 + Ω ′2

2 + Ω ′2
3 ∼ 8, qo = 0.67 m s−1 and Luuo = 0.068 m. At position 7

the mean rotation lies close to the plane of the shear and at −26◦ to the X′
1 axis

while at position 8 it is at −10◦. This direction should be considered relative to the
principal axis of mean strain rate which is at an angle of −45◦ to X′

1.

6. Conclusions
A novel flow in which uniformly sheared turbulence was subjected to plane flow

curvature and rotation about the streamwise axis was introduced. At the start of
flow curvature the mean shear was in a plane normal to the plane of curvature. This
initial condition produced a streamwise mean vorticity that was responsible for the
rotation of the shear. The Reynolds stress anisotropy tensor had typical values for
uniformly sheared turbulence at the start of curvature but as the flow developed
the shear component in the plane normal to the plane of curvature, which is the
plane of the mean shear at the start of curvature, decreased substantially while the
shear component in the plane of the curvature developed non-zero values. When
the turbulence anisotropy was transformed to a frame which rotates with the mean
shear it was found that the adjustments due to rotation were more modest and
that the turbulence was able to follow the rotating shear closely while retaining
its essentially shear character. This result suggests that the observed changes in the
turbulence anisotropy relative to laboratory frame results mostly from the rotation
of the turbulence relative to these axes.
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